Abstract
Biochemistry is an essential yet undervalued aspect of soil ecology, especially when analyzing soil C cycling. We assume, based on tradition, intuition or hope, that the complexity of biochemistry is confined to the microscopic world, and can be ignored when dealing with whole soil systems. This opinion paper draws attention to patterns caused by basic biochemical processes that permeate the world of ecosystem processes. From these patterns, we can estimate activities of the biochemical reactions of the central C metabolic network and gain insights into the ecophysiology of microbial biosynthesis, growth, and maintenance energy requirements: important components of Carbon Use Efficiency (CUE). We show that glucose is processed via the Embden-Meyerhof-Parnas glycolysis in one soil, but via Pentose Phosphate or Entner-Doudoroff pathways in two other soils. However, notwithstanding this metabolic diversity, glucose use efficiency is high and thus substrate use for maintenance energy and overflow respiration is low in these soils. These results contradict current dogma, based on four decades of debate in soil ecology, that the maintenance energy demand in soil communities is a quantitative important, although variable, component of soil community energy metabolism. We identify three main shortcomings in our current understanding of substrate use efficiency: 1) in numeric and conceptual models, we lack appreciation of the strategies that microbes employ to quickly reduce energy needs in response to starvation; 2) in order to understand variation in CUE, we need to improve our understanding of the processes of exudation (including all changes in allocation of C from the cell soluble to insoluble fraction and extracellular environment) and microbial turnover; and 3) whether tracer experiments can be used to measure the long-term substrate use efficiency of soil microbial communities depends critically on the ability and speed with which non-growing cells take up tracer substrates and metabolism activates and subsequently de-activates in response to starvation, as well as on how cellular activities scale to the community level. To move the field of soil ecology forward, future research must consider the details of microbial ecophysiology and develop new tools that enable direct measurement of microbial functioning in intact soils. We submit that 13C metabolic flux analysis is one of those new tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.