Abstract

Titanium alloys are the primary candidates in several applications due to its promising characteristics, such as high strength to weight ratio, high yield strength, and high wear resistance. Despite its superior performance, some inherent properties, such as low thermal conductivity and high chemical reactivity lead to poor machinability and result in premature tool failure. In order to overcome the heat dissipation challenge during machining of titanium alloys, nano-cutting fluids are utilized as they offer higher observed thermal conductivity values compared to the base oil. The objective of this work is to investigate the effects of multi-walled-carbon nanotubes (MWCNTs) cutting fluid during cutting of Ti-6Al-4V. The investigations are carried out to study the induced surface quality under different cutting design variables including cutting speed, feed rate, and added nano-additive percentage (wt%). The novelty here lies on enhancing the MQL heat capacity using nanotubes-based fluid in order to improve Ti-6Al-4V machinability. Analysis of variance (ANOVA) has been implemented to study the effects of the studied design variables on the machining performance. It was found that 4 wt% MWCNTs nano-fluid decreases the surface roughness by 38% compared to the tests performed without nano-additives, while 2 wt% MWCNTs nano-fluids improve the surface quality by 50%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.