Abstract
In this article, we introduce the notion of M-coidempotent elements of a ring and investigate their connections with fully coidempotent modules, fully copure modules and vn-regular modules where M is a module. We prove that if M is a finitely cogenerated module, then M is fully copure if and only if M is semisimple. We prove that if M is a Noetherian module or M is a finitely cogenerated module, then M is fully coidempotent if and only if M is a vn-regular module. Finally, we give a characterization of semisimple Artinian modules via weak idempotents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.