Abstract
Low-lying excited states of planarly extended nanographenes are investigated using the long-range corrected (LC) density functional theory (DFT) and the spin-flip (SF) time-dependent density functional theory (TDDFT) by exploring the long-range exchange and double-excitation correlation effects on the excitation energies, band gaps, and exciton binding energies. Optimizing the geometries of the nanographenes indicates that the long-range exchange interaction significantly improves the CC bond lengths and amplify their bond length alternations with overall shortening the bond lengths. The calculated TDDFT excitation energies show that long-range exchange interaction is crucial to provide accurate excitation energies of small nanographenes and dominate the exciton binding energies in the excited states of nanographenes. It is, however, also found that the present long-range correction may cause the overestimation of the excitation energy for the infinitely wide graphene due to the discrepancy between the calculated band gaps and vertical ionization potential (IP) minus electron affinity (EA) values. Contrasting to the long-range exchange effects, the SF-TDDFT calculations show that the double-excitation correlation effects are negligible in the low-lying excitations of nanographenes, although this effect is large in the lowest excitation of benzene molecule. It is, therefore, concluded that long-range exchange interactions should be incorporated in TDDFT calculations to quantitatively investigate the excited states of graphenes, although TDDFT using a present LC functional may provide a considerable excitation energy for the infinitely wide graphene mainly due to the discrepancy between the calculated band gaps and IP-EA values. © 2017 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.