Abstract
Abstract The classical density topology is an extension of the natural topology on the real line, as the interior of arbitrary Lebesgue measurable set A is contained in the set of density points of A. Also each density point of A belongs to the closure of A for arbitrary measurable set A. In this paper, we concentrate on lower density operators for which the inclusions mentioned above are not fulfilled. In the first part, examples of such lower density operators generated by measure-preserving bijections are given. There are introduced three conditions to investigate lower density operators for which only the second inclusion holds. In the second part, the concept of operator D introduced by K. Kuratowski is applied to the characterization of such operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.