Abstract

Compatibility of unrooted phylogenetic trees is a well studied problem in phylogenetics. It asks to determine whether for a set of k input trees T1,...,Tk there exists a larger tree (called a supertree) that contains the topologies of all k input trees. When any such supertree exists we call the instance compatible and otherwise incompatible. It is known that the problem is NP-hard and FPT, although a constructive FPT algorithm is not known. It has been shown that whenever the treewidth of an auxiliary structure known as the display graph is strictly larger than the number of input trees, the instance is incompatible. Here we show that whenever the treewidth of the display graph is at most 2, the instance is compatible. Furthermore, we give a polynomial-time algorithm to construct a supertree in this case. Finally, we demonstrate both compatible and incompatible instances that have display graphs with treewidth 3, highlighting that the treewidth of the display graph is (on its own) not sufficient to determine compatibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.