Abstract
The low-complexity assumption in linear systems can often be expressed as rank deficiency in data matrices with generalized Hankel structure. This makes it possible to denoise the data by estimating the underlying structured low-rank matrix. However, standard low-rank approximation approaches are not guaranteed to perform well in estimating the noise-free matrix. In this paper, recent results in matrix denoising by singular value shrinkage are reviewed. A novel approach is proposed to solve the low-rank Hankel matrix denoising problem by using an iterative algorithm in structured low-rank approximation modified with data-driven singular value shrinkage. It is shown numerically in both the input-output trajectory denoising and the impulse response denoising problems, that the proposed method performs the best in terms of estimating the noise-free matrix among existing algorithms of low-rank matrix approximation and denoising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.