Abstract

We consider Lorentzian manifolds with parallel light-like vector field V. Being parallel and light-like, the orthogonal complement of V induces a codimension one foliation. Assuming compactness of the leaves and non-negative Ricci curvature on the leaves it is known that the first Betti number is bounded by the dimension of the manifold or the leaves if the manifold is compact or non-compact, respectively. We prove in the case of the maximality of the first Betti number that every such Lorentzian manifold is – up to finite cover – diffeomorphic to the torus (in the compact case) or the product of the real line with a torus (in the non-compact case) and has very degenerate curvature, i.e. the curvature tensor induced on the leaves is light-like.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.