Abstract
ABSTRACTWe consider the following iterative construction of a random planar triangulation. Start with a triangle embedded in the plane. In each step, choose a bounded face uniformly at random, add a vertex inside that face and join it to the vertices of the face. After n – 3 steps, we obtain a random triangulated plane graph with n vertices, which is called a Random Apollonian Network (RAN). We show that asymptotically almost surely (a.a.s.) a longest path in a RAN has length o(n), refuting a conjecture of Frieze and Tsourakakis. We also show that a RAN always has a cycle (and thus a path) of length , and that the expected length of its longest cycles (and paths) is . Finally, we prove that a.a.s. the diameter of a RAN is asymptotic to , where is the solution of an explicit equation. © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 45, 703–725, 2014
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.