Abstract

The nonlinear space-charge effects in high intensity accelerator can degrade beam quality and cause particle losses. Self-consistent macroparticle tracking simulations have been widely used to study these space-charge effects. However, it is computationally challenging for long-term tracking simulation of these effects. In this paper, we study a fully symplectic self-consistent particle-in-cell model and numerical methods to mitigate numerical emittance growth. We also discuss about a fast alternative frozen space-charge model that has a potential to improve computational speed significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call