Abstract
Long Range Dependence (LRD) scaling behavior has been argued to characterize long-term surface temperature time series. LRD is typically measured by the so-called “Hurst” coefficient, “H”. Using synthetic temperature time series generated by a simple climate model with known physics, I demonstrate that the values of H obtained for observational temperature time series can be understood in terms of the linear response to past estimated natural and anthropogenic external radiative forcing combined with the effects of random white noise weather forcing. The precise value of H is seen to depend on the particular noise realization. The overall distribution obtained over an ensemble of noise realizations is seen to be a function of the relative amplitude of external forcing and internal stochastic variability and additionally in climate “proxy” records, the amount of non-climatic noise present. There is no obvious reason to appeal to more exotic physics for an explanation of the apparent scaling behavior in observed temperature data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.