Abstract
We investigate logics for coalgebraic simulation from a compositional perspective. Specifically, we show that the expressiveness of an inductively-defined language for coalgebras w.r.t. a given notion of simulation comes as a consequence of an expressivity condition between the language constructor used to define the language for coalgebras, and the relator used to define the notion of simulation. This result can be instantiated to obtain Baltag's logics for coalgebraic simulation, as well as a logic which captures simulation on unlabelled probabilistic transition systems. Moreover, our approach is compositional w.r.t. coalgebraic types. This allows us to derive logics which capture other notions of simulation, including trace inclusion on labelled transition systems, and simulation on discrete Markov processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.