Abstract

In the paper the problem of testing of two-sided hypotheses for variance components in mixed linear models is considered. When the uniformly most powerful invariant test does not exist (see e.g. Das and Sinha, in Proceedings of the second international Tampere conference in statistics, 1987; Gnot and Michalski, in Statistics 25:213–223, 1994; Michalski and Zmyślony, in Statistics 27:297–310, 1996) then to conduct the optimal statistical inference on model parameters a construction of a test with locally best properties is desirable, cf. Michalski (in Tatra Mountains Mathematical Publications 26:1–21, 2003). The main goal of this article is the construction of the locally best invariant unbiased test for a single variance component (or for a ratio of variance components). The result has been obtained utilizing Andersson’s and Wijsman’s approach connected with a representation of density function of maximal invariant (Andersson, in Ann Stat 10:955–961, 1982; Wijsman, in Proceedings of fifth Berk Symp Math Statist Prob 1:389–400, 1967; Wijsman, in Sankhyā A 48:1–42, 1986; Khuri et al., in Statistical tests for mixed linear models, 1998) and from generalized Neyman–Pearson Lemma (Dantzig and Wald, in Ann Math Stat 22:87–93, 1951; Rao, in Linear statistical inference and its applications, 1973). One selected real example of an unbalanced mixed linear model is given, for which the power functions of the LBIU test and Wald’s test (the F-test in ANOVA model) are computed, and compared with the attainable upper bound of power obtained by using Neyman–Pearson Lemma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call