Abstract

We introduce the definition of locally convex curves and establish some properties of such curves. In the section 1, we consider the curve \(K\) allowing the parametric representation \(x = u(t),\, y = v(t), \, (a \leqslant t \leqslant b)\), where \(u(t)\), \(v(t)\) are continuously differentiable on \([a,b]\) functions such that \(|u'(t)| + |v'(t)| > 0 \,\forall t \in [a,b]\). A continuous on \([a,b]\) function \(\theta(t)\) is called it the angle function of the curve \(K\) if the following conditions hold: \(u'(t) = \sqrt{(u'(t))^2 + (v'(t))^2}\, \cos \theta(t), \quad v'(t) = \sqrt{(u'(t))^2 + (v'(t))^2}\, \sin \theta(t)\). The curve \(K\) is called it locally convex if its angle function \(\theta(t)\) is strictly monotonous on \([a,b]\). For a closed curve \(K\) the number \(deg K= \cfrac{\theta(b)- \theta(a)}{2 \pi}\) is whole. This number is equal to the number of rotations that the speed vector \((u'(t),v'(t))\) performs around the origin. The main result of the first section is the statement: if the curve \(K\) is locally convex, then for any straight line \(G\) the number \(N(K;G)\) of intersections of \(K\) and \(G\) is finite and the estimate \(N(K;G) \leqslant 2 |deg K|\) holds. We discuss versions of this estimate for closed and non-closed curves. In the sections 2 and 3, we consider curves arising in the investigation of a linear homogeneous differential equation of the form \(L(x) \equiv x^{(n)} + p_1(t) x^{(n-1)} + \cdots p_n(t) x = 0 \) with locally summable coefficients \(p_i(t)\, (i = 1, \cdots,n)\). We demonstrate how conditions of disconjugacy of the differential operator \(L\) that were established in works of G.A. Bessmertnyh and A.Yu.Levin, can be applied.

Highlights

  • Основные результатыОбозначим через N (G; K) число точек пересечения прямой G c кривой K.

  • Если вектор-функция r(t) дважды непрерывно дифференцируема на отрезке I, т.

  • Регулярную кривую K назовём локально выпуклой, если соответствующая ей угловая функция θ(t) строго монотонна.

Read more

Summary

Основные результаты

Обозначим через N (G; K) число точек пересечения прямой G c кривой K. Если вектор-функция r(t) дважды непрерывно дифференцируема на отрезке I, т. Регулярную кривую K назовём локально выпуклой, если соответствующая ей угловая функция θ(t) строго монотонна. Для локально выпуклой кривой K число точек пересечения с каждой прямой конечно и допускает простую оценку сверху через degK. Оценим сверху число N (G; K) точек пересечения прямой G с кривой K, заданной параметрическими уравнениями (2). Будем (для определенности) считать, что угловая функция θ(t) строго возрастает; это предположение влечёт за собой неравенство degK 1. Для произвольной локально выпуклой кривой K число N (K) может быть значительно меньше 2|degK|. Как и выше, θ(t) – угловая функция локально выпуклой кривой K, задаваемой параметрическими уравнениями (1). Надо лишь в соответствующем месте использовать хорошо известное следствие теоремы Ролля: если в промежутке J функция f имеет n нулей, то её производная f в этом же промежутке имеет самое меньшее n − 1 нулей. (Для периодических функций это следствие допускает определенное усиление, которое и применялось выше)

Приложения к дифференциальным уравнениям
Обсуждение потенциальных обобщений

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.