Abstract

In this note, we study several issues in the design of localized quality-of-service (QoS) routing schemes that make routing decisions based on locally collected QoS state information (i.e., there is no network-wide information exchange among routers). In particular, we investigate the granularity of local QoS state information and its impact on the design of localized QoS routing schemes from a theoretical perspective. We develop two theoretical models for studying localized proportional routing: one using the link-level information and the other using path-level information. We compare the performance of these localized proportional routing models with that of a global optimal proportional model that has knowledge of the global network QoS state. We demonstrate that using only coarser-grain path-level information it is possible to obtain near-optimal proportions. We then discuss the issues involved in implementation of localized proportional routing and present some practical schemes that are simple and easy to implement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.