Abstract
AbstractIn the present paper we consider Fitting classes of finite soluble groups which locally satisfy additional conditions related to the behaviour of their injectors. More precisely, we study Fitting classes 1 ≠⊆such that an-injector of G is, respectively, a normal, (sub)modular, normally embedded, system permutable subgroup of G for all G ∈.Locally normal Fitting classes were studied before by various authors. Here we prove that some important results—already known for normality—are valid for all of the above mentioned embedding properties. For instance, all these embedding properties behave nicely with respect to the Lockett section. Further, for all of these properties the class of all finite soluble groups G such that an x-injector of G has the corresponding embedding property is not closed under forming normal products, and thus can fail to be a Fitting class.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.