Abstract
In this paper we introduce a definition of the local conservation property for numerical methods solving time dependent conservation laws, which generalizes the classical local conservation definition. The motivation of our definition is the Lax–Wendroff theorem, and thus we prove it for locally conservative numerical schemes per our definition in one and two space dimensions. Several numerical methods, including continuous Galerkin methods and compact schemes, which do not fit the classical local conservation definition, are given as examples of locally conservative methods under our generalized definition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.