Abstract

Let \(G = (V,E)\) be a connected simple graph of order \(p\) and size \(q\). A graph \(G\) is called local antimagic (total) if \(G\) admits a local antimagic (total) labeling. A bijection \(g : E \to \{1,2,\ldots,q\}\) is called a local antimagic labeling of $ if for any two adjacent vertices \(u\) and \(v\), we have \(g^+(u) \ne g^+(v)\), where \(g^+(u) = \sum_{e\in E(u)} g(e)\), and \(E(u)\) is the set of edges incident to \(u\). Similarly, a bijection \(f:V(G)\cup E(G)\to \{1,2,\ldots,p+q\}\) is called a local antimagic total labeling of \(G\) if for any two adjacent vertices \(u\) and \(v\), we have \(w_f(u)\ne w_f(v)\), where \(w_f(u) = f(u) + \sum_{e\in E(u)} f(e)\). Thus, any local antimagic (total) labeling induces a proper vertex coloring of \(G\) if vertex \(v\) is assigned the color \(g^+(v)\) (respectively, \(w_f(u)\)). The local antimagic (total) chromatic number, denoted \(\chi_{la}(G)\) (respectively \(\chi_{lat}(G)\)), is the minimum number of induced colors taken over local antimagic (total) labeling of \(G\). In this paper, we determined \(\chi_{lat}(G)\) where \(G\) is the amalgamation ofcomplete graphs. Consequently, we also obtained the local antimagic (total) chromatic number of the disjoint union of complete graphs, and the join of \(K_1\) and amalgamation of complete graphs under various conditions. An application of local antimagic total chromatic number is also given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.