Abstract
We study continuous subadditive set-valued maps taking points of a linear space X to convex compact subsets of a linear space Y. The subadditivity means that φ(x 1 + x 2) ⊂ φ(x 1) + φ(x 2). We characterize all pairs of locally convex spaces (X, Y) for which any such map has a linear selection, i.e., there exists a linear operator A: X → Y such that Ax ∈ φ(x), x ∈ X. The existence of linear selections for a class of subadditive maps generated by differences of a continuous function is proved. This result is applied to the Lipschitz stability problem for linear operators in Banach spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.