Abstract
We consider the linear programming approach for constrained and unconstrained Markov decision processes (MDPs) under the long-run average-cost criterion, where the class of MDPs in our study have Borel state spaces and discrete countable action spaces. Under a strict unboundedness condition on the one-stage costs and a recently introduced majorization condition on the state transition stochastic kernel, we study infinite-dimensional linear programs for the average-cost MDPs and prove the absence of a duality gap and other optimality results. Our results do not require a lower-semicontinuous MDP model. Thus, they can be applied to countable action space MDPs where the dynamics and one-stage costs are discontinuous in the state variable. Our proofs make use of the continuity property of Borel measurable functions asserted by Lusin’s theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.