Abstract

Wasserstein balls, which contain all probability measures within a pre-specified Wasserstein distance to a reference measure, have recently enjoyed wide popularity in the distributionally robust optimization and machine learning communities to formulate and solve data-driven optimization problems with rigorous statistical guarantees. In this technical note we prove that the Wasserstein ball is weakly compact under mild conditions, and we offer necessary and sufficient conditions for the existence of optimal solutions. We also characterize the sparsity of solutions if the Wasserstein ball is centred at a discrete reference measure. In comparison with the existing literature, which has proved similar results under different conditions, our proofs are self-contained and shorter, yet mathematically rigorous, and our necessary and sufficient conditions for the existence of optimal solutions are easily verifiable in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.