Abstract

The gradient method is well known to globally converge linearly when the objective function is strongly convex and admits a Lipschitz continuous gradient. In many applications, both assumptions are often too stringent, precluding the use of gradient methods. In the early 1960s, after the amazing breakthrough of Łojasiewicz on gradient inequalities, it was observed that uniform convexity assumptions could be relaxed and replaced by these inequalities. On the other hand, very recently, it has been shown that the Lipschitz gradient continuity can be lifted and replaced by a class of functions satisfying a non-Euclidean descent property expressed in terms of a Bregman distance. In this note, we combine these two ideas to introduce a class of non-Euclidean gradient-like inequalities, allowing to prove linear convergence of a Bregman gradient method for nonconvex minimization, even when neither strong convexity nor Lipschitz gradient continuity holds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.