Abstract
We consider a novel class of linear bilevel optimization models with a lower level that is a linear program with complementarity constraints (LPCC). We present different single-level reformulations depending on whether the linear complementarity problem (LCP) as part of the lower-level constraint set depends on the upper-level decisions or not as well as on whether the LCP matrix is positive definite or positive semidefinite. Moreover, we illustrate the connection to linear trilevel models that can be reduced to bilevel problems with LPCC lower levels having positive (semi)definite matrices. Finally, we provide two generic and illustrative bilevel models from the fields of transportation and energy to show the practical relevance of the newly introduced class of bilevel problems and show related theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.