Abstract

SummaryThe approximation of reduced linear evolution operator (propagator) via dynamic mode decomposition (DMD) is addressed for both linear and nonlinear events. The 2D unsteady supersonic underexpanded jet, impinging the flat plate in nonlinear oscillating mode, is used as the first test problem for both modes. Large memory savings for the propagator approximation are demonstrated. Corresponding prospects for the estimation of receptivity and singular vectors are discussed. The shallow water equations are used as the second large‐scale test problem. Excellent results are obtained for the proposed optimized DMD method of the shallow water equations when compared with recent POD‐based/discrete empirical interpolation‐based model reduction results in the literature. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.