Abstract

We prove that every (claw, net)-free graph contains an induced doubly dominating cycle or a dominating pair. Moreover, using LexBFS we present a linear time algorithm which, for a given (claw, net)-free graph, finds either a dominating pair or an induced doubly dominating cycle. We show also how one can use structural properties of (claw, net)-free graphs to solve efficiently the domination, independent domination, and independent set problems on these graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.