Abstract
An automated on-line UV photooxidation with peroxodisulfate of some environmentally relevant organoarsenic and organotin compounds in a system built from commercially available modules has been studied and optimised with a view to both species-independent quantification of the total arsenic or tin in samples containing different organic species by flow injection hydride generation atomic absorption spectrometry (FI–HGAAS) and speciation analysis by coupled high-performance liquid chromatography (HPLC) with HGAAS detection. For organoarsenicals, the reaction with alkaline peroxodisulfate in a 10–15-m knotted reactor for >1.5 min insures >90% transformation of inorganic As(III) and six organoarsenic species to arsenate: monomethylarsonate, dimethylarsinate, arsenobetaine, arsenocholine, trimethylarsine oxide and tetramethylarsonium. For organotins, the UV photooxidation with acidic peroxodisulfate at 95–100°C provides recoveries of >80% for the inorganic tin, dimethyltin, trimethyltin, triethyltin, tripropyltin, triphenyltin, monobutyltin, dibutyltin and tributyltin but only approximately 15% for tetrabutyltin. The best characteristic masses in integrated absorbance ( A int) and peak-height ( A p) measurements, respectively, are 30 pg and 480 pg for arsenic(V) and 22 pg and 410 pg for tin(IV), employing 100-μl injections. The RSDs are 5.5% and 8.5% at 5 ng As(V) levels and 4.3% and 6.4% at 10 ng Sn(IV) levels in A int and A p modes, respectively. The limits of detection (LOD, 3σ) for As are 7 μg l −1 and 4 μg l −1 in FI-UV–HGAAS and HPLC–UV–HGAAS, respectively. The LODs for i-Sn(IV) are 2 μg l −1 in FI-UV–HGAAS, with both A int and A p measurements. The sample throughput rates are 20 and 12 samples per hour with 10-m and 15-m knotted reactors (i.d. 0.5 mm), respectively. Urine certified reference materials containing 0.052–0.48 μg ml −1 As have been analysed for their total arsenic content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.