Abstract
A new method based on a computer vision and statistical learning system is proposed to estimate the wear level in cutting inserts in order to identify the time for its replacement. A CNC parallel lathe and a computer vision system have been used to obtain 1383 flank images. A binary image for each of the former wear flank images have been obtained by applying several pre-processing and segmenting operations. Every wear flank region has been described by means of nine geometrical descriptors. LDA (linear discriminant analysis) shows that three out of the nine descriptors provide the 98.63% of the necessary information to carry out the classification, which are eccentricity, extent and solidity. The result obtained using a finite mixture model approach shows the presence of three clusters using these descriptors, which correspond with low, medium and high wear level. A monitoring approach is performed using the tool wear evolution for each insert along machining and the discriminant analysis. This evolution represents the probability of belonging to each one of the wear classes (low, medium and high). The estimate of the wear level allows to replace the tool when the wear level is located at the end of the M class (medium), preventing that the tool enters into the H class (high).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Tools and Manufacture
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.