Abstract

A flat neural network is designed for the on-line state prediction of engine. To reduce the computational cost of weight matrix, a fast recursive algorithm is derived according to the pseudoinverse formula of a partition matrix. Furthermore, the forgetting factor approach is introduced to improve predictive accuracy and robustness of the model. The experiment results indicate that the improved neural network is of good accuracy and strong robustness in prediction, and can apply for the on-line prediction of nonlinear multi input multi output systems like vehicle engines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.