Abstract

An on-line signature verification scheme based on linear prediction coding (LPC) cepstrum and neural networks is proposed. Cepstral coefficients derived from linear predictor coefficients of the writing trajectories are calculated as the features of the signatures. These coefficients are used as inputs to the neural networks. A number of single-output multilayer perceptrons (MLPs), as many as the number of words in the signature, are equipped for each registered person to verify the input signature. If the summation of output values of all MLPs is larger than the verification threshold, the input signature is regarded as a genuine signature; otherwise, the input signature is a forgery. Simulations show that this scheme can detect the genuineness of the input signatures from a test database with an error rate as low as 4%

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.