Abstract

Abstract The instantaneous measurement of both ablation front displacement and removal rate during ultrafast laser microdrilling is demonstrated by on line sensing technique based on optical feedback interferometry in both unipolar and bipolar semiconductor laser. The dependence of laser ablation dynamics on pulse duration, energy density and working pressure has been investigated, thus allowing a significant advancement of the basic understanding of the ultrafast laser-material interactions. Moreover, the detection system results high-sensitive, compact, and easily integrable in most industrial workstations, enabling the development of real-time control to improve ablation efficiency and quality of laser micro- machining processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.