Abstract

The problem of routing unit-length, real-time messages in a distributed system is considered. An on-line routing algorithm is one that routes messages without any knowledge of future arrivals of messages. An on-line algorithm is said to be optimal if it produces a feasible route whenever one exists. In this article, we study the issue whether it is possible to have an optimal on-line algorithm for the following networks—unidirectional ring, out-tree, in-tree, bidirectional tree, and bidirectional ring. The problem is considered under various restrictions of the four parameters—origin node, destination node, release time, and deadline. We show that: (1) for a unidirectional ring, no such algorithm can exist unless one of the four parameters is fixed (i.e., all messages have identical values for that parameter); (2) for an out-tree, no such algorithm can exist unless one of the three parameters—origin node, destination node, and release time—is fixed; (3) For an in-tree, no such algorithm can exist unless one of the three parameters—origin node, destination node, and deadline —is fixed; (4) for a bidirectional tree, no such algorithm can exist unless the origin node or the destination node is fixed; (5) for a bidirectional ring, no such algorithm can exist unless the origin node and either the destination node or the release time are fixed. Our results give a sharp boundary delineating those instances for which an optimal algorithm exists and those for which no such algorithm can exist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.