Abstract

We develop on-line routing and wavelength assignment (RWA) algorithms for WDM bidirectional ring and torus networks with N nodes. The algorithms dynamically support all k-allowable traffic matrices, where k denotes an arbitrary integer vector [k/sub 1/, k/sub 2/,... k/sub N/], and node i, 1 /spl les/ i /spl les/ N, can transmit at most k/sub i/ wavelengths and receive at most k/sub i/ wavelengths. Both algorithms support the changing traffic in a rearrangeably nonblocking fashion. Our first algorithm, for a bidirectional ring, uses [(/spl Sigma//sub i=1//sup N/ k/sub i/)/3] wavelengths in each fiber and requires at most three lightpath rearrangements per new session request regardless of the number of nodes N and the amount of traffic k. When all the k/sub i/'s are equal to k, the algorithm uses [kN/3] wavelengths, which is known to be the minimum for any off-line rearrangeably nonblocking algorithm. Our second algorithm, for a torus topology, is an extension of a known off-line algorithm for the special case with all the k/sub i/'s equal to k. For an R /spl times/ C torus network with R /spl ges/ C nodes, our on-line algorithm uses [kR/2] wavelengths in each fiber, which is the same as in the off-line algorithm, and is at most two times a lower bound obtained by assuming full wavelength conversion at all nodes. In addition, the on-line algorithm requires at most C - 1 lightpath rearrangements per new session request regardless of the amount of traffic k. Finally, each RWA update requires solving a bipartite matching problem whose time complexity is only O (R), which is much smaller than the time complexity O(kCR/sup 2/) of the bipartite matching problem for an off-line algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.