Abstract

This paper addresses the detection and localization of partial discharge (PD) in crossbonded (CB) high voltage (HV) cables. A great deal has been published in recent years on PD based cable insulation condition monitoring, diagnostics and localization in medium voltage (MV) and high voltage (HV) cables. The topic of pulse propagation and PD source localization in CB HV cable systems has yet to be significantly investigated. The main challenge to PD monitoring of CB HV cables is as a result of the interconnectedness of the sheaths of the three single phase cables. The cross-bonding of the sheaths makes it difficult to localize which of the three phases a PD signal has emanated from. Co-axial cables are used to connect cable sheaths to cable link boxes, for ease of installation and protection against moisture. A second challenge is, therefore, the coupling effect when a PD pulse propagates in HV cable joints and the co-axial cables, making PD detection and localization more complex. The paper presents experimental investigations into PD pulse coupling between the cable center conductor and the sheath and the behavior of PD pulse propagation in CB HV cables. It proposes a model to describe PD pulse propagation in a CB HV cable system to allow monitoring and localization, and also presents the knowledge rules required for PD localization in CB HV cable systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.