Abstract

An on-line optimizing control scheme has been developed for bulk polymerization of free radical systems. The effects of random errors, as well as one kind of a major disturbance (heating system failure), have been studied. A model-based, inferential state estimation scheme was incorporated to estimate, on-line, the parameters of the model (and thereby, the monomer conversion and molecular weight of the polymer) using experimental data on temperature and viscosity. A sequential quadratic programming technique was used for this purpose. A major disturbance, such as heating system failure, leads to a deteriorated final product unless an on-line optimal temperature trajectory (history) is recomputed and implemented on the reactor. Genetic algorithm was used for this purpose. It has been found that, if the “sensing” of the major temperature deviation from the optimal value and rectification of the heating system is achieved well in advance of the onset of the Trommsdroff effect, use of a reoptimized temperature history is sufficient to produce the desired product without significantly altering reaction time. However, if such a disturbance occurs late, a single-shot intermediate addition of an optimal amount of initiator needs to be used in addition to changing the temperature history to produce polymers having the desired properties in the minimum reaction time. Other types of failures can similarly be handled using the methodology developed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2101–2120, 1999

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call