Abstract

A multi-variable model predictive control (MPC) was formulated to solve control problems associated with a combination of regulation and targeting desired set-points. We investigated the simultaneous control of key polymer properties: the particle size (PSD) and molecular weight distribution (MWD) by manipulating the flow rates of the monomers (styrene, MMA), surfactant, initiator and the temperature of the reactor. A multi-input–multi-output (MIMO) formulation was constructed for the constrained optimal control problem to maximize the width of the PSD (with M n at a constant set-point), and to maximize the average molar mass. The strategy developed within a gPROMS-API-DCS environment allowed real-time implementation of model-based control of the process. The optimal control problem was implemented via an interface to a dynamic optimization code. Major improvements in process operation and polymer property control resulted on the implementation of our multi-variable MPC algorithm. The manipulation of the four flow rates and the temperature increased the degree of freedom in the system and achieved tighter PSD and MWD control. The on-line performance of MPC for MWD and PSD control was found to be satisfactory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call