Abstract

One of the commonly acknowledged issues in continuous manufacturing of drug products is how to provide a representative sampling on flowing powder to assure its blend uniformity. An investigation was conducted to improve understanding on the impact of powder flow rate under different continuous manufacturing conditions and the impact of optical parameters (such as resolution, co-adds, and integration time) on NIR spectral quality with respect to a dispersive and a Fourier transform instrument. A partial least squares (PLS)-based spectral pretreatment was found useful to tackle the impact of different flow rates on NIR spectral signals. Multivariate figures of merit (FOM) were used to evaluate performances across different instruments and optical settings and discover the advantageous selectivity and sensitivity on the Fourier transform than the dispersive instrument regardless of the use of co-adds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.