Abstract

A novel detection method combining on-line liquid chromatography-accurate radioisotope counting (LC-ARC, advanced stop flow controller) coupled with a radioactivity detector and mass spectrometer has been developed. One of the major benefits of this method is that this system enhances the sensitivity of radioisotope measurement for metabolite identification in drug metabolism studies. Another advantage to this system is the easy interface with the mass spectrometer, which allows acquisition of mass spectrometric data on-line. For purposes of evaluating this system, in vitro microsomal incubations with [3Hlpropranolol were conducted. On-line separation and identification of [3H]propranolol metabolites was achieved without intensive sample preparation, concentration, or fraction collection. Mass spectrometric analysis showed the presence of propranolol major metabolites formed by hydroxylation, correlating with previously published results. Further evaluations of this system also were conducted using two 14C compounds, which are herein labeled X and Y. As our results show, 14C peaks were detected down to 6 cpm, which is approximately 20 times more sensitive than commercially available flow through radioactivity detectors. The overall results suggest that the combination of LC-ARC with radioactivity detection and mass spectrometry has great potential as a powerful tool for improving the sensitivity of radioisotope measurement in metabolite identification studies during drug discovery and development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.