Abstract
An adaptive on-line learning method is presented to facilitate pattern classification using active sampling to identify the optimal decision boundary for a stochastic oracle with a minimum number of training samples. The strategy of sampling at the current estimate of the decision boundary is shown to be optimal compared to random sampling in the sense that the probability of convergence toward the true decision boundary at each step is maximized, offering theoretical justification on the popular strategy of category boundary sampling used by many query learning algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.