Abstract

The assembly operation using industrial robots can be accomplished successfully in well-structured environments where the mating pair location is known in advance. However, in real-world scenarios there are uncertainties associated to sensing, control and modelling errors that make the assembly task very complex. In addition, there are also unmodeled uncertainties that have to be taken into account for an effective control algorithm to succeed. Among these uncertainties, it can be mentioned disturbances, backlash and aging of mechanisms. In this paper, a method to overcome the effect of those uncertainties based on the Fuzzy ARTMAP artificial neural network (ANN) to successfully accomplish the assembly task is proposed. Experimental work is reported using an industrial 6 DOF robot arm in conjunction with a vision system for part location and wrist force/torque sensing data for assembly. Force data is fed into an ANN evolving controller during a typical peg in hole (PIH) assembly operation. The controller uses an incremental learning mechanism that is solely guided by the sensed forces. In this article, two approaches are presented in order to compare the incremental learning capability of the manipulator. The first approach uses a primitive knowledge base (PKB) containing 16 primitive movements to learn online the first insertion. During assembly, the manipulator learns new patterns according to the learning criteria which turn the PKB into an enhanced knowledge base (EKB). During a second insertion the controller uses effectively the EKB and operation improves. The second approach employs minimum information (it contains only the assembly direction) and the process starts from scratch. After several operations, that knowledge base increases by including only the needed patterns to perform the insertion. Experimental results showed that the evolving controller is able to assemble the matting pairs enhancing its knowledge whenever it is needed depending on the part geometry and level of expertise. Our approach is demonstrated through several PIH operations with different tolerances and part geometry. As the robot’s expertise evolves, the PIH operation is carried out faster with shorter assembly trajectories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.