Abstract
In this study, an online quality measurement system for detecting foreign substances on fresh-cut lettuce was developed using hyperspectral reflectance imaging. The online detection system with a single hyperspectral camera in the range of 400–1000 nm was able to detect contaminants on both surfaces of fresh-cut lettuce. Algorithms were developed for this system to detect contaminants such as slugs and worms. The optimal wavebands for discriminating between contaminants and sound lettuce as well as between contaminants and the conveyor belt were investigated using the one-way analysis of variance (ANOVA) method. The subtraction imaging (SI) algorithm to classify slugs resulted in a classification accuracy of 97.5%, sensitivity of 98.0%, and specificity of 97.0%. The ratio imaging (RI) algorithm to discriminate worms achieved classification accuracy, sensitivity, and specificity rates of 99.5%, 100.0%, and 99.0%, respectively. The overall results suggest that the online quality measurement system using hyperspectral reflectance imaging can potentially be used to simultaneously discriminate foreign substances on fresh-cut lettuces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.