Abstract

This paper describes the philosophy and the implementation of a preventive control algorithm for application in power system dynamic security assessment. The methodology consists of an optimization procedure where: the objective function takes into account economic costs; inequality constraints confine the trajectory of the system in a practical domain of the state space; and equality constraints derive from the discretization of the differential-algebraic equations of the power system sparse representation. The algorithm has been implemented to reschedule the power system generation in order to guarantee transient stability. The feasibility of the approach is shown through computer simulation tests on a realistic sized test network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.