Abstract

We have developed a new method for the on-line quantification of deuterium in water vapour. We call this method flowing afterglow mass spectrometry (FA-MS). A swarm of H3O+ precursor ions is created in flowing helium carrier gas by a microwave discharge. These precursor ions react with the H2O, HDO, H2(17)O and H2(18)O molecules in a water vapour sample that is introduced into the carrier gas/H3O+ ion swarm. The hydrated ions, H3O+.(H2O)3 at m/z 73, and their isotopic variant ions H8DO4(+) and H9(17)OO(3)(+) at m/z 74 and H9(18)OO(3)(+) at m/z 75, are thus formed. By adopting the known fractional abundance of 18O in water vapour, and accounting for the contribution of the isotopic ions H9(17)OO(3)(+) to the ion signal at m/z 74, a measurement of the 74/75 ion signal ratio under equilibrium conditions provides the fractional deuterium abundance in the water vapour sample. Using this technique, the deuterium abundance in the water vapour present in single exhalations of breath can be determined. Thus, from the temporal variations of breath deuterium following the ingestion of a known quantity of D(2)O, we show that total body water can be determined non-invasively and the kinetics of water flow around the body can be tracked.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call