Abstract

Tool wear, chatter vibration, chip breaking and built-up edge are the main phenomena to be monitored in modern manufacturing processes. Much work has been carried out in the analysis and detection of these phenomena. However, most work has been mainly concerned with single, isolated detection of such phenomena. The relationships between each fault have so far received very little attention. This paper presents a neural-network-based on-line fault diagnosis scheme which monitors the level of tool wear, chatter vibration and chip breaking in a turning operation. The experimental results show that the neural network has a high prediction success rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.