Abstract
A high performance liquid chromatography system, a sample preparation device, and an imaged capillary IEF (CIEF) instrument are integrated and multiplexed on-line. The system is equivalent to two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), by transferring the principle of 2-D separation to the capillary format. High performance liquid chromatography (HPLC) provides protein separation based on size using a gel filtration chromatography (GFC) column. Each eluted protein is sampled and directed to a novel microdialysis hollow fiber membrane device, where simultaneous desalting and carrier ampholyte mixing occurs. The sample is then driven to the separation column in an on-line fashion, where CIEF takes place. The fluidic technology used by our 2-D system leads to natural automation. The coupling of the two techniques is simple. This is attributed to high speed and efficiency of the sample preparation device that acts as an interface between the two systems, as well as the speed and simplicity of our whole column absorption imaged CIEF instrument. To demonstrate the feasibility of this approach, the separation of a mixture of two model proteins is studied. Sample preparation and CIEF were complete in just 4-5 min, for each of the eluted proteins. Total analysis time is about 24 min. Three-dimensional data representations are constructed. Challenges and methods to further improve our instrument are discussed, and the design of an improved horseshoe-shaped sample preparation sample loop membrane interface is presented and characterized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.