Abstract

The two-dimensional suffix tree of an n × n square matrix A is a compacted trie that represents all square submatrices of A[11]. For the off-line case, i.e., A is given in advance to the algorithm, it is known how to build it in optimal time, for any type of alphabet size [11],[18]. Motivated by applications in Image Compression[22[, Giancarlo and Guaiana [14] considered the on-line version of the two-dimensional suffix tree and presented an O(n2 log2 n)-time algorithm, which we refer to as GG. That algorithm is a nontrivial generalization of Ukkonen's on-line algorithm for standard suffix trees [23]. The main contribution in this paper is an O(log n) factor improvement in the time complexity of the GG algorithm, making it optimal for unbounded alphabets [9]. Moreover, the ideas presented here also lead to a major simplification of the GG algorithm. Technically, we are able to preserve most of the structure of the original GG algorithm, by reducing a computational bottleneck to a primitive operation, i.e., comparison of Lcharacters, which is here implemented in constant time rather than O(log n) time as in GG. However, preserving that structure comes at a price. Indeed, in order to make everything work, we need a careful reorganization of another fundamental algorithm: Weiner's algorithm for the construction of standard suffix trees [24]. Specifically, here we provide a version of that algorithm which takes linear time and works on-line and concurrently over a set of strings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.