Abstract
Spark ablation is an established technique for generating aerosol nanoparticles. Recent demonstrations of compositional tuning of bimetallic aerosols have led to a demand for on-line stoichiometry measurements. In this work, we present a simple, non-intrusive method to determine the composition of a binary AuAg nanoparticle aerosol on-line using the optical emission from the electrical discharges. Machine learning models based on the least absolute shrinkage and selection operator (LASSO) were trained on optical spectra datasets collected during aerosol generation and labelled with X-ray fluorescence spectroscopy (XRF) compositional measurements. Models trained for varying discharge energies demonstrated good predictability of nanoparticle stoichiometry with mean absolute errors <10 at. %. While the models utilized the emission spectra at different wavelengths in the predictions, a combined model using spectra from all discharge energies made accurate predictions of the AuAg nanoparticle composition, showing the method's robustness under variable synthesis conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.