Abstract

Abstract Historically, on-line and real-time measurement of wood chip properties in the pulp and paper industry has been a challenge and has hampered the development of advanced process control strategies. In this study, visible and near-infrared (VIS-NIR) spectroscopy is investigated as a means to characterize wood chip brightness and chemical composition (i.e. extractives, lignin and holocellulose content) on-line. The estimated standard error on the holocellulose reference measurement was significantly reduced using data reconciliation. VIS-NIR calibration models were developed using partial least square regression. Derivative and baseline correction were found to be the most appropriate pre-processing methods. Model desensitization to the influence of moisture content and temperature by means of external parameter orthogonalization resulted in more robust models critical for on-line applications under harsh industrial conditions. Wavelength selection improved model accuracy for all properties. A comparison of two different spectrometer and probe combinations demonstrated that, after wavelengths selection, a non-contact measurement of wood chips performs as well as a contact measurement of wood powder for monitoring chemical composition. On-line prediction of wood chip brightness and chemical composition using the developed VIS-NIR models was demonstrated over 7 months in a kraft pulp mill processing both hardwood and softwood chips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.