Abstract

nonlinear systems. In [4-6], the authors proved that the T-S fuzzy system can approximate any continuous function to any precision. This paper proposes a novel method of on-line modeling and control through the Takagi-Sugeno (T-S) fuzzy-neural model for a class of general n-link robot manipulators. Compared with previous methods, this paper has two unique aspects: first, a more general n-link robot system using on-line adaptive T-S fuzzy-neural controller is investigated, and second, the complete proof of the controller is given. The general robot systems are linearized via the mean value theorem, and then the T-S fuzzy-neural model can approximate the linearized system. Also, we propose an on-line identification algorithm and put significant emphasis on robust tracking controller design using an adaptive scheme for the robot systems. Finally, an example including two cases is provided to demonstrate the feasibility and robustness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.