Abstract

In this paper, we consider a problem termed ldquopath followingrdquo. This differs from the common problem of reference tracking, in that here we can adjust the speed at which we traverse the reference trajectory. We are interested in ascertaining the degree to which we can track a given trajectory, and in characterizing the class of paths for which we can generate an appropriate temporal specification so that the path can be tracked arbitrarily well in an <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> sense. We give various bounds on the achievable performance, as well as tight results in special cases. In addition, we give a numerical procedure based on convex optimization for computing the achievable performance. The results demonstrate that there are situations where arbitrarily good <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> performance may be achieved even though the origin is not in the convex hull of the positive limit set of the path to be followed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.