Abstract

Let T(λ1,...,λ n ) be the lifetime of a parallel system consisting of exponential components with hazard rates λ1,...,λ n , respectively. For systems with only two components, Dykstra et. al. (1997) showed that if (λ1, λ2) majorizes (γ1, γ2), then, T(λ1, λ2) is larger than T(γ1, γ2) in likelihood ratio order. In this paper, we extend this theorem to general parallel systems. We introduce a new partial order, the so-called d-larger order, and show that if (λ1,...,λ n ) is d-larger than (γ1,...,γ n ), then T(λ1,...,λ n ) is larger than T(γ1,...,γ n ) in likelihood ratio order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.